SWITCHING THEORY AND LOGIC DESIGN

(Common to ECE, EEE, CSE, IT)

\section*{Course Code: 13EC1105
 | \mathbf{L} | T | \mathbf{P} | \mathbf{C} |
| :--- | :--- | :--- | :--- |
| $\mathbf{4}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{3}$ |}

Course Educational Objectives:

* To familiarize students with different number systems, digital logic, simplification and minimization of Boolean functions.
* To design combinational \& sequential digital circuits and state machines.
* To introduce programmable logic devices.

Course Outcomes:

Students can design optimized logic circuits through combinational and sequential logic.

UNIT-I

(10 Lectures)
NUMBER SYSTEMS \& CODES:
Introduction to number systems, Complement representation of negative numbers, binary arithmetic, binary codes, Error detecting \& correcting codes.

UNIT-II
(15 Lectures)
BOOLEAN ALGEBRA AND SWITCHING FUNCTION
Fundamental postulates of Boolean algebra, Basic theorems and properties, switching functions, Simplification of Boolean equations, Digital logic gates, properties of XOR gates, universal gates - NAND/NOR realizations. K-map method, Prime implicants, don't care combinations, Minimal SOP and POS forms, Tabular Method, Prime-Implicant chart, simplification rules.

UNIT-III

(13 Lectures)
COMBINATIONAL LOGIC DESIGN:
Adders, Subtractor, Multiplexer, De-Multiplexer, MUX Realization of
switching functions, Encoder, Decoder, Parity bit generator, Codeconverters, Basic PLD's-ROM, PROM, PLA, PAL Realizations.

UNIT-IV

(13 Lectures)

SEQUENTIAL CIRCUITS:

Classification of sequential circuits (Synchronous, Asynchronous, Pulse mode, Level mode with examples) Latches and Flip-flops-Triggering and excitation tables, registers, shift registers, Steps in synchronous sequential circuit design, synchronous counters, ripple counters, Design of moduloN Ring \& Shift counters, Serial binary adder, sequence detector.

UNIT-V

(9 Lectures)

FINITE STATE MACHINES:

Finite state machine-capabilities and limitations, Mealy and Moore modelsminimization of completely specified sequential machines, Partition techniques, incompletely specified sequential machines using merger table.

ALGORITHMIC STATE MACHINES:

Salient features of the ASM chart-Simple examples-System design using data path and control subsystems-control implementations-examples of Weighing machine and Binary multiplier.

TEXT BOOKS:

1. Morris Mano, "Digital Design" PHI, $3^{\text {rd }}$ Edition, 2006.
2. Anand Kumar, "Switching Theory and Logic Design" PHI, 2008

REFERENCES:

1. Zvi Kohavi, "Switching \& Finite Automata theory" TMH, $2^{\text {nd }}$ Edition,
2. R.P.Jain. "Modern Digital Electronics", 4th ed., TMH, 2009.
3. John M. Yarbrough, "Digital Logic Applications and Design" Thomson Publications, 2006.
4. Charles H. Roth, "Fundamentals of Logic Design" Thomson Publications, $5^{\text {th }}$ Edition, 2004.
